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Abstract. This paper investigates the off-line use of the dependency
structure matrix genetic algorithm (DSMGA). In particular, a problem-
specific crossover operator is design by performing dependency structure
matrix (DSM) analysis. The advantages and disadvantages of such an
off-line use are discussed. Two schemes that helps the off-line usage are
proposed. Finally, those off-line schemes are demonstrated by DSMGA
on MaxTrap functions.

1 Introduction

Dependency structure matrix genetic algorithm (DSMGA) [1] was proposed un-
der the inspirations of Holland’s observation of the importance of linkage [2],
Goldberg’s genetic algorithm (GA) decomposition [3], and the use of dependency
structure matrix (DSM) in organization theory [4,5]. In particular, the DSMGA
adopts DSM analysis to identify linkage groups or building blocks (BBs) and
then utilizes the BB information to perform a BB-wise crossover which tries to
maximize BB mixing and minimize BB disruptions. The DSM analysis utilizes
a DSM clustering algorithm [6] which turns pair-wise dependencies into linkage-
group information, or BB information. The first proposal of the DSMGA [1] per-
forms the DSM analysis every generation to retrieve BB information, like most
probabilistic model building GAs [7] or estimation of distribution algorithms [8]
do. However, the DSM analysis can also be performed off-line. In other words,
one can simply apply the DSM analysis once to retrieve BB information and
then use a simple GA (sGA) with a crossover operator designed for the problem
according to the BB information.

The purpose of this paper is to investigate the off-line use of DSM analysis for
GAs. The paper first gives an introduction to the DSMGA. The advantages and
disadvantages of the off-line DSM analysis are then discussed, and two schemes
for off-line usage are proposed. To demonstrate the off-line schemes of DSM
analysis, a MaxTrap function is tested. Finally, the paper discusses some possible
future work, followed by conclusions.
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2 An Introduction to DSMGA

This section gives a brief introduction to the DSMGA. Readers who are inter-
ested in DSM clustering are referred to [6]. For more details about DSMGA,
please refer to [1].

2.1 DSM and DSM Clustering

A DSM is a matrix where each entry dij represents the dependency between node
i and node j [4,5]. Entries dij can be real numbers or integers. The larger the dij

is, the higher the dependency is between node i and node j. The diagonal entries
(dii) have no significance and are usually set to zero or blacked-out. Figure 1
gives an example of DSM.

A B C D E F GH
A

B
C
D
E
F
G
H

Fig. 1. A DSM. “x” means that dependency exists; the blank squares means no de-
pendency. This figure illustrates, for example, that A and B are independent, and that
A and C are dependent. Clustering is not so obviously at the first glance.

The goal of DSM clustering is to find subsets of DSM elements (i.e., clus-
ters) so that nodes within a cluster are maximally dependent and clusters are
minimally interacting. DSM clustering is a sophisticated task which requires ex-
pertise [9]. For example, not too many people know how to cluster the DSM in
Figure 1. However, after we reorder the nodes (Figure 2), it is easily seen that
the DSM can be cleanly clustered into three parts: {B, D, G}, {A, C, E, H},
and {F}.

Yu, Yassine, and Goldberg [6] proposed the following objective function by
using the minimal description length principle.

fDSM (M) = (nc log(nc) + log(nn)Σnc
i=1cli) + (|S|(2 log(nn) + 1)) , (1)

where f measures the description length that a model M needs to describe a
given DSM ; nc is the number of clusters in M ; nn is the number of nodes of the
DSM; cli is the size of the i-th cluster in M ; S is the set of mis-described data
of M . The above objective function has shown capable to cluster a given DSM,
and the clustering results competes with human experts.
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Fig. 2. The same DSM in Figure 1 but after reordered. The DSM can be cleanly
clustered as ((B,D,G)(A,C,E,H),(F)).

2.2 Utilizing DSM Clustering to Identify BBs: The DSMGA

The DSM clustering algorithm can be thought as an linkage-identification algo-
rithm which turns pair-wise linkage information into high-order linkage informa-
tion. DSMGA [1] is proposed based on this thought.

DSMGA utilizes statistical analysis to estimate the fitness of order-2
schemata. Based on a nonlinearity-detection method similar to LINC [10], a
DSM where each entry dij represents the linkage between gene i and gene j is
created. By applying the DSM clustering algorithm, the pair-wise linkage in-
formation is turned into BB information, which is then utilized to achieve the
BB-wise crossover [11]. The DSMGA has shown capable to correctly identify
BBs and efficiently solve problems with uniformly-scaled BBs.

3 Why Go for Offline: The Pros and the Cons

There are mainly three types of linkage-identification methods: (1) Perturba-
tion/statistical analysis (e.g. mGA [12], gemGA [13], LINC/LIMD GA [10],
DSMGA [1]) (2) linkage adaptation (e.g. LEGO [14], LLGA [15]), and (3)
probabilistic model building [7,8]. Among these three types, the first type of
linkage-identification methods is most suitable for off-line usage because they
do not require promising individuals; instead, those methods favor a uniformly
distributed population over the solution space, or perturbations from several
individuals. The remaining of this section discusses the pros and the cons of
performing linkage-identification methods off-line.

Pros:

Computational Time Saving. If the linkage-identification algorithm is used
off-line, because it is only performed once, obviously there is a speedup obtained
from the linkage-identification procedure. The speedup should be in the order of
the number of generations of the GA.

The off-line usage does not only save computational time on linkage-
identification, it also possibly saves some number of function evaluations. By
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considering genetic drifting and statistical error of decision-making, Pelikan [16]
has shown that to guarantee a high confidence of obtaining correct dependen-
cies, roughly a population size of O(l) is needed, where l is the problem size. By
assuming an infinite population size and perfect mixing, the time to convergence
has shown to grow proportional to O(

√
l) [17,11] (for a finite population size,

see [18]). The above models suggests a lower bound of the number of function
evaluations O(l1.5) for a GA with linkage-identification techniques.

If the linkage-identification techniques are performed off-line, and every BB
is correctly identified, according to the gambler’s ruin model [19], a population
size O(l0.5 log l) is needed (the log l is so when the failure rate is set to O( 1

l )).
Therefore, the lower bound of the number of function evaluations becomes O(l)+
O(l0.5 log l) × O(

√
l) = O(l log l), where the first O(l) comes from the off-line

linkage identification, and O(l0.5 log l) × O(
√

l) comes from the production of
the population size and the convergence time. This is surely just a loose lower
bound because an infinite population size and perfect mixing is assumed in the
time-to-convergence model.

The accuracy of the linkage model should be taken into consideration when
we try to estimate a possible speedup. When the linkage-identification method
is applied off-line, a fewer number of individuals are investigated and the BB
information might be less accurate. As a result, the inaccuracy of the BB infor-
mation causes a longer convergence time. This will be mentioned later when the
disadvantages are discussed.

BB information reusability. Another reason to perform linkage identifica-
tion off-line is that the BB information retrieved from one problem might be
reusable for another problem. Take the car design as an example. The car design
usually has similar multiple objectives but the design for different cars weight
those objectives differently. For example, the design for one car might put im-
portance on acceleration, while the design for another car might emphasize more
on comfortability. However, no matter how different the design weights those ob-
jectives, some dependencies are invariant. For instance, one can imagine that the
design of the brake system should depend more on the engine and depend less on
the windscreen wiper. In such cases, the BBs for the series of the problems are
similar, and hence the BB information are reusable. After one of those problems
is optimized by the GA with linkage-identification techniques, other problems
should be optimized efficiently by a sGA with the same BB information.

Population size estimation. Several population-sizing models have been
proposed including the decision-making model [20] and the gambler’s ruin
model [19]. To use those population-sizing models, several parameters are needed
including the number of BBs m, the order of BBs k, the variance of fitness con-
tributed by BBs σ2

BB , and the minimal signal magnitude between the correct BB
and the most competing BB dmin. The first two parameters are straightforward
once the BB information is obtained. However, it is not an easy task to estimate
the latter two parameters, and we simply leave it as future work for now. As a
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conclusion, the off-line usage of linkage-identification methods possibly enables
us to estimate the population size needed for the GA.

Cons:

Less linkage model error tolerance. In a worst-case scenario, a misidentified
BB in the off-line BB information makes the BB difficult to correctly converge
for the GA because of BB disruptions. If the signals of BBs are not too small
for the linkage-identification method to detect (otherwise, both on-line and off-
line linkage identification would fail), when the linkage-identification method is
performed every generation, the disruption would not be that severe. When a
BB is misidentified in some generation because the current population does not
reveal the signal of that BB, as long as the linkage-identification method is not
too inaccurate, the BB would be correctly identified in the next generation with
a high probability. Yu and Goldberg [21] indicates that as long as the number
of misidentified BBs e is smaller than O(

√
m), where m is the number of BBs of

the problem, the convergence of (m − 1) BBs is highly possible. However, if the
linkage-identification method is performed off-line and it misidentifies e BBs, in
the worst case, only (m−e) BBs would correctly converge. Therefore, the quality
of the retrieved BB information is more important in the off-line usage. In the
next section, two schemes are proposed to alleviate the quality problem.

BB-invariance assumption. One of the assumptions of the off-line use of
linkage-identification methods is that BBs are invariant. However, it is known
that some optimization problems are hierarchical [22], and the dependencies
varies with the degree of the GA convergence. In this case, probably the linkage-
identification method needs to be performed every several generations, and the
scheme becomes a evaluation relaxation version of the on-line usage which per-
forms the linkage-identification algorithm every generation. If on-line estimation
of the number of errors of BB information can be obtained, we can perform the
linkage-identification algorithm only when the number of errors exceeds some
predefined threshold.

4 Identifying Linkage Offline: Two Schemes

In this section, we propose two schemes that help for the off-line usage. Later, in
section 5, the strength and weakness of these two schemes are shown empirically.

4.1 Sizing the Population Properly

One important issue when the linkage-identification algorithm is performed off-
line is to determine the population size needed for the algorithm. Population
sizing is especially important for the off-line usage. A non-sufficient population
size will decrease the BB information quality and cause a great loss of solution
quality.
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Here we propose the following scheme, which is similar to the parameter-
less GA [23]. First, we choose a reasonable, but small population size N1. For
example, a population size of N1 = l is a good initial guess, where l is the
problem size. In the next trial, N1 more individuals are investigated, and the
linkage-identification algorithm is performed on the doubled population size,
N2 = 2N1. For the next trial, N2 more individuals are investigated. This pro-
cedure is repeated until the BB information does not vary. If the population
size actually needed to reveal correct linkages with a high probability is N , this
scheme would at most costs 8N number of function evaluations (in which case
we are unlucky at N , and get correct linkages on 2N and 4N). Depending on
the noise of linkage identification and the time constraint, practically one should
stop the procedure when the BB information retrieved in the last two runs are
similar enough. Note that this population size is only used when performing
the linkage-identification algorithm. After that, the GA performs on a popula-
tion size estimated by one of the population-sizing models [20,19], by some prior
knowledge, or by empirical observations. Note that unlike the parameterless GA,
the number of function evaluations consumed does not increase that fast, when
the doubling-population-size procedure is stopped at a population size N , the
number of function evaluations consumed is only N .

4.2 Combining BB Information

As indicated in the previous section, one of the disadvantages of the off-line
usage of the linkage-identification method is that the off-line usage is less error-
tolerant. If the BB information contains e errors, probably only (m − e) BBs
would correctly converge. Suppose that we stop the above doubling-population-
size scheme at some point, and the BB information contains some errors. Now
we are facing the following two questions: (1) Should we double the population
size again to make the BB information more accurate or execute the linkage-
identification algorithm on an independent population of the same size and try
to combine the BB information, and (2) if the latter scheme is chosen, how to
combine BB information? This subsection proposes a method to combine two
BB information and leaves the first question to section 5.

As indicated in [21], there are two types of error that can happen for a
linkage-identification algorithm. One is that the linkage-identification algorithm
indicates that two genes are linked but in reality they are not; the other is that
the linkage-identification algorithm indicates no linkage between two genes but
in reality they are linked. The first type of error slows down the BB mixing [24]
and causes a larger estimation of the population size (because of the higher-order
linkage). The second type of error causes BB disruptions. When the linkage-
identification method is performed off-line, the second type of error means a
lower solution quality as mentioned in section 3. In other words, in the off-line
scheme, the second type of error is more destructive than it is in the on-line
scheme. Therefore, when combining two copies of BB information, the combined
BB information indicates no linkage between two genes only when both copies
of BB information indicate so.
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Fig. 3. Combining BB information. BBI3 is the combination of BBI1 and BBI2.
The shaded BBs are misidentified. Suppose a proportion e1 of BBs are misidentified
in BBI1, and e2 proportion in BBI2. BBI3 at most misidentifies a proportion e1e2

of BBs. The proportion of correctly identified BBs (regions A and B) in BBI3 is
(1 − e1)(1 − e2).

Suppose that we have two independent copies of BB information, BBI1 and
BBI2; let BBI3 be the combined BB information according to the above scheme
(Figure 3). Suppose that BBI1 causes e1 proportion of BB disruptions, and
BBI2 causes e2 proportion of BB disruptions. On average, a proportion (1 −
e1)(1−e2) of BBs are correctly identified in both BBI1 and BBI2, and they are
also correctly identified in BBI3 (region A in Figure 3). A proportion (e1)(1 −
e2)+(e2)(1−e1) of BBs will be disrupted by one of BBI1 and BBI2, while BBI3
will correctly identify those BBs according to the combining scheme (region B in
Figure 3). A proportion e1e2 of BBs will be disrupted by both BBI1 and BBI2,
and BB disruptions might also occur by using BBI3 (region C in Figure 3).
However, BBI3 still have a chance not to disrupt them. For instance, if a BB {1,
2, 3, 4, 5} is misidentified by BBI1 as {1, 2, 3} and {4, 5}, and misidentified by
BBI2 as {1, 2} and {3, 4, 5}, BBI3 will still correctly identify that BB. To be
conservative, we assume that the region C in Figure reffig:BBI will always cause
BB disruptions. Then BBI3 will only cause a proportion of e1e2 BB disruptions.

Note that the above calculations assume that BBI1 and BBI2 are indepen-
dent.

4.3 A Little Complexity Analysis

This subsection shows that the above usage of multiple copies of BB information
does not increase the lower bound of the number of function evaluations that
GAs need.

Suppose that b different copies of BB information were retrieved by per-
forming the linkage-identification method off-line b times, and on average the
number of misidentified BBs is e. According to [21] (also see this for the mean-
ing of the misidentified BB), e < O(

√
m) must be satisfied; otherwise, even the

on-line version of the GA would not achieve a (m − 1)-BB convergence. As-
suming that the errors are uniformly distributed, the probability for a copies
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of BB information misidentifying a specific BB is then e
m . The probability that

all b copies of BB information contains wrong information for a specific BB
is then

(
e
m

)b. The expected number of BBs that all b copies of BB informa-

tion misidentify is m
(

e
m

)b. To achieve a (m − 1)-BB convergence, m
(

e
m

)b ≤ 1
must be satisfied. Given that e < O(

√
m), we can obtain that b is roughly

bounded by O(log m). The estimation of number of function evaluations when
we talked about the computational time saving of the off-line usage becomes
O(l log l) + O(l0.5 log l) × O(

√
l) = O(l log l), which means, the use of multiple

different copies of BB information does not increase the lower bound of the
number of function evaluations.

5 Empirical Results

This section demonstrates the off-line scheme by performing off-line DSM anal-
ysis on a 5 × 10 MaxTrap function (a concatenated trap function of 10 5-bit
traps). A GA with (λ + µ) selection, where λ = 100 and µ = 1000, and uniform
crossover is used to cluster the DSM of genetic dependencies (for the linkage
identification). All experiment results are averaged over 50 independent runs.
The reason of choosing MaxTrap as the test base is that if a BB is misidentified,
most likely the crossover operator would disrupt the BB. For more details about
deceptions, see [25].

The doubling-population-size scheme on average needed 11712 function eval-
uations (6400 for 17 times; 12800 for 83 times), and correctly identifies 99.8%
BBs (100% for 98 times; 90% for 2 times). As predicted, the number function
evaluations is much larger than needed (Figure 4).

Figure 4 illustrates the use of the combining BB information scheme. The
dashed line represents the combination of the BB information given by DSM
analysis on two populations of the same size. For instance, for number of function
evaluation 4000, the direct scheme (solid line) simply applies the DSM analysis
on a population of size 4000. The combining scheme (dashed line) applies the
DSM analysis on two independent populations of size 2000 and then uses the
combined BB information. It can be seen that when the BB information is highly
erroneous, combining BB information is not worthwhile, and simply doubling
the population would be better. However, when the BB information is more
accurate (roughly when the BB information is 92% accurate in experiments),
the combining scheme outperforms the direct scheme.

The reason might be that when the population is too small, doubling the pop-
ulation size will greatly increase the accuracy of pair-wise dependency detection.
However, when the population is large enough to reveal pair-wise dependencies,
the errors mainly come from the the GA failure on DSM clustering. In the ex-
periments, the proportion of correctly identified BBs roughly saturates at 0.98.
The combining scheme outperforms the direct scheme since the combination of
two 0.9 BB information will correctly identify more than 1 − 0.1 × 0.1 = 0.99
BBs.
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Fig. 4. The number of function evaluations versus the proportion of correctly iden-
tified BBs for two different schemes. The solid line represents directly applying the
DSM analysis on individuals. The dashed line represents the combination of the BB
information given by DSM analysis on two populations of the same size.

We can do a little modeling for the two schemes. Assume that the proba-
bility that one chromosome reveals a particular pair-wise dependency is p. The
probability that all N independent chromosome fail to reveal a particular pair-
wise dependency can be modeled as q(N) = (1 − p)N . Suppose that for a BB
to be identified, s pair-wise dependencies need to be detected. Assuming pair-
wise dependencies are uniformly important, the probability that the signal of a
BB is too weak to identify can be approximated as P1(N) = 1 − (1 − q(N))s.
In addition, even if the signal of a BB is strong enough for the linkage-
identification method to identify, the linkage-identification method might still
fail with a small probability P2 because of stochastic behaviors. The probability
that the linkage-identification method fails to identify a particular BB is then
errorScheme1(N) = 1 − (1 − P1(N))(1 − P2). The value of function errorScheme1

also varies with p and s, but here we emphasize that it is a function of N . If
we combine two copies of BB information, the error of the combining scheme
can be modeled as errorScheme2(N) = error2

Scheme1
(N/2). Figure 5 plots the

models with p = 0.1, s = 10, and P2 = 0.05. The models basically agree with
the empirical observations in Figure 4.

If the proportion of correctly identified BBs can be estimated, it is possible
to combine the strength of the two schemes. Suppose that the population size is
N in the current iteration, the BB information is BBI1, and the proportion of
correctly identified BBs is Q(BBI1). In the next generation, when N1 more indi-
viduals are being investigated, the DSM analysis is performed on both the new
N individuals and the combined 2N individuals. Suppose the BB information
are BBI2 and BBI3 respectively. Let BBI4 be the combined BB information
of BBI1 and BBI2. Then we switch to the combining-BB-information scheme
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Fig. 5. Models for the two schemes in Figure 4.

when Q(BBI4) > Q(BBI3); otherwise, we keep doubling the population size
until the combined BB information is better.

6 Future Work and Conclusions

This paper leaves a number of possibilities for future work. The empirical results
indicated that the combining-BB-information scheme works better when the BB
information is accurate. We would like to see if it is possible to suggest an optimal
switching time between the two schemes. The discussions in this paper are not
limited to separable problems, but more experiments need to be done to verify
that, and some modifications of the discussions can be expected. In section 3, we
mentioned about utilizing the BB information to estimate the needed population
size, and we are currently investigating the possibility of doing so.

To conclude, this paper investigated the off-line use of DSM analysis. The
advantages and disadvantages of the off-line use of linkage-identification methods
were discussed. Two schemes that helps the off-line usage were proposed. The
number of function evaluations needed for the two schemes were analyzed. To
demonstrate those schemes, experiments of a MaxTrap function were performed.
The results showed that the off-line usage of DSMGA is applicable, and DSM
analysis is suitable for designing a problem-specific crossover operator.
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